restrictions imposed by (e)(5) would limit the ability of those agencies trained investigators and intelligence analysts to exercise their judgment in conducting investigations and impede the development of intelligence necessary for effective law enforcement and counterterrorism efforts. The TSC has, however, implemented internal quality assurance procedures to ensure that TSC terrorist screening data is as thorough, accurate, and current as possible. The FBI also is exempting the TSRS from the requirements of subsection (e)(5) in order to prevent the use of a challenge under subsection (e)(5) as a collateral means to obtain access to records in the TSRS. The FBI has exempted TSRS records from the access and amendment requirements of subsection (d) of the Privacy Act in order to protect the integrity of counterterrorism investigations. Exempting the TSRS from subsection (e)(5) serves to prevent the assertion of challenges to a record's accuracy, timeliness, completeness, and/or relevance under subsection (e)(5) to circumvent the exemption claimed from subsection (d).

(8) From subsection (e)(8) because to require individual notice of disclosure of information due to compulsory legal process would pose an impossible administrative burden on the FBI and the TSC and could alert the subjects of counterterrorism, law enforcement, or intelligence investigations to the fact of those investigations when not previously known.

(9) From subsection (g) to the extent that the system is exempt from other specific subsections of the Privacy Act.

Dated: November 22, 2005.

Paul R. Corts,

Assistant Attorney General for Administration.

[FR Doc. 05-23568 Filed 12-1-05; 8:45 am] BILLING CODE 4410-02-P

PENSION BENEFIT GUARANTY CORPORATION

29 CFR Part 4044

RIN 1212-AA55

Valuation of Benefits; Mortality Assumptions

AGENCY: Pension Benefit Guaranty Corporation.

ACTION: Final rule.

SUMMARY: The Pension Benefit Guaranty Corporation is amending its benefit valuation regulation by adopting more current mortality assumptions. The

mortality assumptions prescribed under PBGC's regulations to be used to value benefits for non-disabled ("healthy") participants are taken from the 1983 Group Annuity Mortality (GAM–83) Tables. The PBGC published a final rule adopting these tables in 1993, noting that many private-sector insurers used the GAM-83 Tables when setting group annuity prices. At that time, the PBGC also said that it intended to keep each of its individual valuation assumptions in line with those of private-sector insurers, and to modify its mortality assumptions whenever it is necessary to do so to achieve consistency with the private insurer assumptions. This rule updates those assumptions by replacing a version of the GAM-83 Tables with a version of the GAM-94 Tables. The updated mortality assumptions will better conform to those used by privatesector insurers in pricing group annuities.

DATES: Effective January 1, 2006. For a discussion of applicability of the amendments, see the Applicability section in **SUPPLEMENTARY INFORMATION**.

FOR FURTHER INFORMATION CONTACT:

James J. Armbruster, Acting Director, Legislative and Regulatory Department, or James L. Beller, Jr., Attorney, Legislative and Regulatory Department, PBGC, 1200 K Street, N.W., Washington, DC 20005-4026; 202-326-4024. (TTY/ TDD users may call the Federal relay service toll-free at 1-800-877-8339 and ask to be connected to 202–326–4024.)

SUPPLEMENTARY INFORMATION: On March 14, 2005 (at 70 FR 12429), the Pension Benefit Guaranty Corporation (PBGC) published a proposed rule modifying 29 CFR part 4044 (Allocation of Assets in Single-employer Plans). The PBGC received one comment letter on the proposed rule (which is addressed below) and is issuing the final regulation as proposed.

The PBGC's regulations provide rules for valuing benefits in a single-employer plan that terminates in a distress or involuntary termination. (The rules are codified at 29 CFR part 4044, subpart B.) The PBGC uses these rules to determine: (1) The extent to which participants' benefits are funded under the allocation rules of ERISA section 4044, (2) whether a plan is sufficient for guaranteed benefits, and (3) how much an employer owes the PBGC as a result of a plan termination under ERISA section 4062. Employers must use these rules to determine the value of plan benefit liabilities in annual reports required to be submitted under ERISA section 4010, and may use these rules to ensure that plan spinoffs, mergers, and transfers

comply with Internal Revenue Code section 414(l).

General Valuation Approach

The valuation rules prescribe a number of assumptions intended to produce reasonable valuation results on average for the range of plans terminating in distress or involuntary terminations, rather than for any particular plan or plan type. The assumptions prescribed by this rule for valuing benefits in terminating plans match the private-sector annuity market to the extent possible.

The market cost of providing annuity benefits is based upon data from periodic surveys conducted for the PBGC by the American Council of Life Insurers (the ACLI surveys). These ACLI surveys ask insurers for pricing information on group annuities. Each respondent to the surveys provides its prices (net of administrative expenses) for a range of ages for immediate annuities (annuities where payments start immediately) and for deferred annuities (annuities where payments are deferred to age 65). Prices of each of the two types of annuities are averaged at each age to get an average market price. Interest factors are derived so that, when combined with the PBGC's healthy-life mortality assumptions, they provide the best fit for the average market prices (as obtained from the ACLI surveys) over the entire range of ages. The interest factors are recalibrated to the annuity survey prices each year. Each month between recalibrations, the interest factors are adjusted based on changes in the yield on long-term corporate investment-grade bonds. The interest factors are then used in conjunction with the PBGC's mortality assumptions (and other PBGC assumptions) to value annuity benefits.

These derived interest factors are not market interest rates. The factors stand in for all the many components used in annuity pricing that are not reflected in the given mortality table—e.g., assumed yield on investment, margins for profit and contingencies, premium and income taxes, and marketing and sales expenses. Because of the relationship among annuity prices, a mortality table, and the derived interest factors, it is never meaningful to compare PBGC's interest factors to market interest rates. The PBGC's interest factors are meaningful only in combination with the PBGC's mortality assumptions.

Mortality Assumptions

One set of assumptions prescribed by the valuation regulation relates to the probabilities that a participant (or beneficiary) will survive to each

expected benefit payment date, i.e., mortality assumptions. The mortality assumptions now used to value benefits for non-disabled ("healthy") participants are taken from the 1983 Group Annuity Mortality (GAM–83) Tables. The PBGC published a final rule adopting these tables in 1993, noting in the preamble to the proposed rule, 58 FR 5128, 5129 (January 19, 1993), that many private-sector insurers used the GAM-83 Tables when setting group annuity prices. The PBGC also said (at 58 FR 5129) that it intended "to keep each of its individual valuation assumptions in line with those of private-sector insurers, and to modify its mortality assumptions whenever it is necessary to do so to achieve consistency with the private insurer assumptions." These mortality assumptions have not been updated since 1993.

As noted, the ACLI periodically conducts surveys, on behalf of the PBGC, of insurers who provide group annuity contracts for information on how they price group annuities. In addition to other pricing questions, the ACLI from time to time has asked for information on which mortality tables the insurers use when pricing group annuities in pension plans. A majority of respondents indicated that, as of March 31, 2002, they use a version of the 1994 Group Annuity Mortality Basic (GAM-94 Basic) Table and project future improvements in mortality with projection scale AA. Similarly, the Society of Actuaries sponsored a survey of pricing actuaries for insurers who provide group annuity contracts and found that five of the ten respondents used a version of the GAM-94 Table and six of the ten used an unloaded (i.e., basic) table. 30-Year Treasury Rates and Defined Benefit Plans, August 22, 2001, p.5. That survey also found that most of the surveyed companies projected future improvements and that the most common projection scale was AA.

Based on these surveys, this regulation adopts the GAM-94 Basic Table as the basis for the healthy-life mortality assumptions to be used for PBGC valuations of plan benefits. Specifically, for a particular valuation, the regulation prescribes the use of the GAM–94 Basic Table projected to the year of that valuation plus 10 years using Scale AA. The updated mortality assumptions will result in interest factors that, when combined with those updated mortality assumptions, will provide prices that match the ACLI survey prices more closely across the entire range of ages than had GAM-83 been used.

The regulation prescribes a projected mortality table to take into account expected improvements in mortality. While it would be ideal to reflect mortality improvement through the use of a fully generational mortality table (i.e., a table that provides for full generational mortality improvement), this would be unduly complex.¹ A fully generational table is constructed from a group of static tables. For example, the value of an annuity payable to a participant beginning at age 65 in 2007 would be calculated from a 2007 static table for the probability of death at age 65, a 2008 static table for the probability of death at age 66, a 2009 static table for the probability of death at age 67, etc.

One method of approximating the effect of full generational mortality improvement is to project the current table for a specified number of years and use the resulting table without further projection. The number of years of projection would be equal to the years to the valuation date plus the duration of liabilities. This rule adopts this approach. A mortality table that includes projection for the liability duration takes into account expected mortality improvements and achieves results very close to those of a fully generational table but in a much less complex manner.

The regulation calls for the use of mortality tables projected to the year of valuation plus 10 years as a rough approximation for the duration of liabilities in plans that terminate in distress or involuntary terminations. Thus, for a valuation in 2006, mortality is projected to the year 2016 for each age. For a valuation in 2007, mortality is projected to the year 2017. For example, the probability of death for a 65-year-old healthy male to be used in a valuation in 2006 would be calculated as follows: $.015629 \times (1 - .014)^{(2006)}$ $^{1994} + ^{10)} = .011461$. The PBGC will publish the projected mortality tables on its Web site (www.pbgc.gov).

There is no reason to expect that the mortality tables under this regulation will match the tables that are prescribed for certain funding purposes under Treasury Regulations at any point in time. The PBGC's mortality tables are based on the mortality experience of group annuitants. In contrast, the tables to be used for certain minimum funding purposes are based on the mortality experience of individuals covered by pension plans.

Because of the way the PBGC's interest factors are determined, the choice of mortality assumptions generally is expected to have no significant effect on benefit valuations. The effect that a change in mortality assumptions will have on valuations generally will be offset by the effect of the corresponding change in the interest factors. For example, the use of GAM-94 mortality assumptions will result in higher interest factors than would the use of GAM-83 mortality assumptions (because GAM-94 has lower mortality rates than GAM-83). When those higher interest factors are combined with GAM-94, the resulting value for a given benefit will generally be about the same as it would be using GAM-83 along with the lower interest factors derived from the ACLI survey prices using GAM-83. (For a more detailed explanation, see the preambles to the PBGC's proposed rule published on January 19, 1993, at 58 FR 5128, and final rule published on September 28, 1993, at 58 FR 50812.)

In addition to the mortality assumptions for healthy individuals, the current regulation provides two other sets of mortality assumptions: (1) Those for participants who are disabled under a plan provision requiring eligibility for Social Security disability benefits (Social Security disabled participants), and (2) those for participants who are disabled under a plan provision that does *not* require eligibility for Social Security disability benefits (non-Social Security disabled participants).

As with the mortality assumptions for healthy individuals, this rule updates the mortality assumptions used for disabled participants. For Social Security disabled participants, the regulation calls for the use of the Mortality Tables for Disabilities Occurring in Plan Years Beginning After December 31, 1994, from Rev. Rul. 96-7 (1996-1 C.B. 59). These tables were developed by the Internal Revenue Service as required by the Retirement Protection Act of 1994 amendments relating to the determination of current liability. For non-Social Security disabled participants, the regulation calls for the use of the healthy life tables projected from 1994 to the calendar year in which the valuation date occurs plus 10 years using Scale AA and setting the resulting table forward three years. In addition, in order to prevent the rates at the older ages from exceeding the corresponding rates in the proposed table for Social Security disabled participants, the mortality rate for non-Social Security disabled participants is capped at the corresponding rate for Social Security disabled participants.

¹ In response to the 1997 Notice of Intent to Propose Rulemaking, one commenter asked for the adoption of a static table rather than a generational table to avoid unnecessary complexity.

For convenience, the PBGC will make all of these mortality tables (like the healthy-life mortality tables) available on its Web site (www.pbgc.gov).

The rule also makes a clarifying change to this regulation to reflect the PBGC's practice of treating a participant as a disabled participant (Social Security disabled and non-Social Security disabled, whichever is applicable) if on the valuation date the participant is under age 65 and has a benefit that was converted under the plan's terms from a disability benefit to an early or normal retirement benefit for any reason other than a change in the participant's health status.

In addition, for clarity, paragraph 4044.52(d) is expressed more simply and moved to paragraph 4044.53(g). That paragraph, which deals with mortality when valuing deferred joint annuities, is being moved from the subsection that deals generally with valuation to the subsection that deals specifically with mortality.

Comments on Notice of Intent To Propose Rulemaking

In developing the proposed rule, the PBGC considered the comments relating to its mortality assumptions that it received in response to its notice of intent to propose rulemaking issued on March 19, 1997 (62 FR 12982). The proposed rule adopted a number of the suggestions made by commenters. For instance, one commenter suggested that the regulation should not call for the use of a reserving table (i.e., a table that includes a built-in margin to provide a cushion for reserving purposes). Another commenter asked for the adoption of a static table rather than a generational table. This final rule adopts basic (nonreserve) tables that approximate the effect of full generational mortality improvements without the complexity of a fully generational table.

Several commenters asked that the rule provide mortality assumptions that vary depending on industry or workforce type or that vary on a planspecific basis. The proposed rule did not adopt either of these approaches. As discussed above and in the proposed rule, the mortality assumptions are selected with the goal of achieving consistency with the mortality assumptions used by private-sector insurers for pricing group annuity contracts. To this end, ACLI respondents were asked to identify the mortality tables they used and any variations to those tables. Neither the proposed GAM-94 Basic Table, the most commonly identified table, nor any of the other tables identified by the

survey respondents provided mortality assumptions that vary depending on industry or workforce type. Moreover, none of the survey respondents reported that they make modifications or adjustments based on industry or workforce type. As for the use of planspecific mortality assumptions, the general valuation approach is to apply a common set of assumptions (e.g., mortality, expected retirement age) to all plans with the goal of producing reasonable results on average. Shifting to a plan-specific approach for mortality would be a fundamental change that could require burdensome verification procedures. Therefore, the PBGC proposed to continue to use more general mortality assumptions that, like its other assumptions, produce reasonable results on average. (No comments were received on the proposed rule with respect to this issue.)

Comments on Proposed Rule

One comment letter on the proposed rule was received. The commenter, an actuary in private practice, asserted that the GAM–94 Basic Table is not widely available and asked the PBGC to explain this table more clearly and to publish the exact Qs (mortality rates). The commenter also suggested that the PBGC should clarify why the proposed rates tables for Social Security disabled lives, which differ from other popular rates tables for disabled lives (for example, the RP–2000 disabled life mortality table), are appropriate.

The GAM–94 Basic Table is also known as the 1994 Uninsured Pensioner Mortality Table (UP–94), which is widely available; for example, it is included in the Society of Actuaries' mortality table software, "Table Manager." The GAM–94 Basic Table, with specific Qs and the projection scale, was part of the proposed rule (and is included in this final rule). In addition, as stated above and in the proposed rule, the PBGC will publish the projected mortality tables on its Web site (www.pbgc.gov).

The rule calls for the use of rates from the Mortality Tables for Disabilities Occurring in Plan Years Beginning After December 31, 1994, from Rev. Rul. 96–7 (1996–1 C.B. 59) for Social Security disabled participants, because those rates were developed based on the Social Security Administration's experience for individuals who are receiving benefits under its program. These tables differ from certain other popular tables (in particular, the RP–2000 table), which are based on a population of all disabled lives, rather

than the narrower population of Social Security disabled lives.

Applicability

These amendments apply to any plan with a termination date on or after January 1, 2006.

Other Changes to Valuation Regulation

The PBGC will continue to explore other ways to improve its benefit valuation regulations and may make other changes through separate rulemaking actions.

Compliance With Rulemaking Guidelines

The PBGC has determined, in consultation with the Office of Management and Budget, that this rule is a "significant regulatory action" under Executive Order 12866. The Office of Management and Budget, therefore, has reviewed this rule under Executive Order 12866.

The PBGC certifies under section 605(b) of the Regulatory Flexibility Act that this rule will not have a significant economic impact on a substantial number of small entities. As explained earlier in this preamble, the effect on a plan valuation of the change in the PBGC's mortality assumptions will be offset by the effect on that plan's valuation of the PBGC's use of higher interest factors. Because of this offsetting effect, the PBGC does not expect this rule to have a significant economic impact on a substantial number of entities of any size. Accordingly, sections 603 and 604 of the Regulatory Flexibility Act do not

This final rule contains no collection of information requirements within the meaning of the Paperwork Reduction Act of 1995.

List of Subjects in 29 CFR Part 4044

Employee benefits plans, Pension insurance, Pensions.

■ For the reasons set forth above, the PBGC amends part 4044 of 29 CFR chapter XL as follows:

PART 4044—ALLOCATION OF ASSETS IN SINGLE-EMPLOYER PLANS

■ 1. The authority citation for part 4044 continues to read as follows:

Authority: 29 U.S.C. 1301(a), 1302(b)(3), 1341, 1344, and 1362.

- 2. Amend § 4044.52 by adding the word "and" to the end of paragraph (c), removing paragraph (d), and redesignating paragraph (e) as paragraph (d).
- 3. Revise § 4044.53 to read as follows:

4044.53 Mortality assumptions.

- (a) General rule. Subject to paragraph (b) of this section (regarding certain death benefits), the plan administrator shall use the mortality factors prescribed in paragraphs (c), (d), (e), (f), and (g) of this section to value benefits under § 4044.52.
- (b) Certain death benefits. If an annuity for one person is in pay status on the valuation date, and if the payment of a death benefit after the valuation date to another person, who need not be identifiable on the valuation date, depends in whole or in part on the death of the pay status annuitant, then the plan administrator shall value the death benefit using—
- (1) The mortality rates that are applicable to the annuity in pay status under this section to represent the mortality of the pay status annuitant; and
- (2) The mortality rates under paragraph (c) of this section to represent the mortality of the death beneficiary.
- (c) Healthy lives. If the individual is not disabled under paragraph (f) of this section, the plan administrator will value the benefit using—
- (1) For male participants, the rates in Table 1 of Appendix A to this part projected from 1994 to the calendar year in which the valuation date occurs plus 10 years using Scale AA from Table 2 of Appendix A to this part; and
- (2) For female participants, the rates in Table 3 of Appendix A to this part projected from 1994 to the calendar year in which the valuation date occurs plus 10 years using Scale AA from Table 4 of Appendix A to this part.
- (d) Social Security disabled lives. If the individual is Social Security disabled under paragraph (f)(1) of this section, the plan administrator will value the benefit using—
- (1) For male participants, the rates in Table 5 of Appendix A to this part; and
- (2) For female participants, the rates in Table 6 of Appendix A to this part.
- (e) Non-Social Security disabled lives. If the individual is non-Social Security disabled under paragraph (f)(2) of this section, the plan administrator will value the benefit at each age using—
- (1) For male participants, the lesser of—
- (i) The rate determined from Table 1 of Appendix A to this part projected from 1994 to the calendar year in which the valuation date occurs plus 10 years using Scale AA from Table 2 of Appendix A to this part and setting the resulting table forward three years, or
- (ii) The rate in Table 5 of Appendix A to this part.
- (2) For female participants, the lesser of—

- (i) The rate determined from Table 3 of Appendix A to this part projected from 1994 to the calendar year in which the valuation date occurs plus 10 years using Scale AA from Table 4 of Appendix A to this part and setting the resulting table forward three years, or
- (ii) The rate in Table 6 of Appendix A to this part.
 - (f) Definitions of disability.
- (1) Social Security disabled. A participant is Social Security disabled if, on the valuation date, the participant is less than age 65 and has a benefit in pay status that—
- (i) Is being received as a disability benefit under a plan provision requiring either receipt of or eligibility for Social Security disability benefits, or
- (ii) Was converted under the plan's terms from a disability benefit under a plan provision requiring either receipt of or eligibility for Social Security disability benefits to an early or normal retirement benefit for any reason other than a change in the participant's health status.
- (2) Non-Social Security disabled. A participant is non-Social Security disabled if, on the valuation date, the participant is less than age 65, is not Social Security disabled, and has a benefit in pay status that—
- (i) Is being received as a disability benefit under the plan, or
- (ii) Was converted under the plan's terms from a disability benefit to an early or normal retirement benefit for any reason other than a change in the participant's health status.
- (g) Contingent annuitant mortality during deferral period. If a participant's joint and survivor benefit is valued as a deferred annuity, the mortality of the contingent annuitant during the deferral period will be disregarded.
- 4. Revise Appendix A to part 4044 to read as follows:

Appendix A to Part 4044—Mortality Rate Tables

The mortality tables in this appendix set forth that for each age x the probability q_X that an individual aged x (in 1994, when using Table 1 or Table 3) will not survive to attain age x+1. The projection scales in this appendix set forth for each age x the annual reduction AA_X in the mortality rate at age x.

TABLE 1.—MORTALITY TABLE FOR HEALTHY MALE PARTICIPANTS

[94 GAM basic]

Age x	q_{x}
15	0.000371
16	0.000421

TABLE 1.—MORTALITY TABLE FOR HEALTHY MALE PARTICIPANTS—Continued

[94 GAM basic]

	[94 GAIVI basic]	
	Age x	q_{X}
17		0.000463
18		0.000495
19		0.000521
20		0.000545
21		0.000570
22		0.000598
23		0.000633
24		0.000671
25 26		0.000711 0.000749
27		0.000749
28		0.000782
29		0.000838
30		0.000862
31		0.000883
32		0.000902
33		0.000912
34		0.000913
35		0.000915
36		0.000927
37		0.000958
38		0.001010
39		0.001075
40		0.001153
41		0.001243
42		0.001346
43		0.001454
44		0.001568
45		0.001697
46		0.001852
47		0.002042
48		0.002260
49 50	•••••	0.002501 0.002773
51		0.002773
52		0.003066
53		0.003455
54		0.004278
55		0.004758
56		0.005322
57		0.006001
58		0.006774
59		0.007623
60		0.008576
61		0.009663
62		0.010911
63		0.012335
64		0.013914
65		0.015629
66		0.017462
67		0.019391
68		0.021354
69		0.023364
70		0.025516
71		0.027905
72		0.030625
73		0.033549
74 75		0.036614
75 76		0.040012 0.043933
76 77		
77 70		0.048570 0.053991
78 79		
79 80		0.060066 0.066696
81		0.06696
82		0.073780
83		0.081217
84		0.096358
J-7		0.00000

 q_{X} 0.000233

0.000261

0.000281 0.000293

TABLE 1.—MORTALITY TABLE FOR HEALTHY MALE PARTICIPANTS— Continued

[94 GAM basic]

Age x	q_{X}
85	0.104559
86	0.113755
87	0.124377
88	0.136537
89	0.149949
90	0.164442
91	0.179849
92	0.196001
93	0.213325
94	0.231936
95	0.251189
96	0.270441
97	0.289048
98	0.306750
99	0.323976
100	0.341116
101	0.358560
102	0.376699
103	0.396884
104	0.418855
105	0.440585
106	0.460043
107	0.475200
108	0.485670
109	0.492807
110	0.497189
111	0.499394
112	0.500000
113	0.500000
114	0.500000
115	0.500000
116	0.500000
117	0.500000
118	0.500000
119	0.500000
120	1.000000

TABLE 2.—PROJECTION SCALE AA FOR HEALTHY MALE PARTICIPANTS

Age x	AA_X
15	0.019
16	0.019
17	0.019
18	0.019
19	0.019
20	0.019
21	0.018
22	0.017
23	0.015
24	0.013
25	0.010
26	0.006
27	0.005
28	0.005
29	0.005
30	0.005
31	0.005
32	0.005
33	0.005
34	
35	
36	
37	
38	
39	

TABLE 2.—PROJECTION SCALE AA FOR HEALTHY MALE PARTICI-PANTS—Continued

Age x	AA_X
40	0.008
41	0.009
42	0.010
43	0.011
44	0.012
45	0.013
46	0.014
47	0.015
48	0.016
49	0.017
50	0.018
51	0.019
52	0.020
53	0.020
54	0.020
55	0.019
56	0.018
57	0.017
58	0.016
59	0.016
60	0.016
61	0.015
62	0.015
63	0.014

64 65

66

67 68

70

71

73

74

.....

.....

80

81

82

83

84

86

87

89

90 91

92

93

95

96

97

98

99

100

102

103

105

106

108

109

TABLE 2.—PROJECTION SCALE AA **FOR** HEALTHY MALE PARTICI-PANTS—Continued

Age x	AA_X
110	0.000 0.000 0.000 0.000 0.000 0.000
116	0.000 0.000 0.000 0.000 0.000

TABLE 3.—MORTALITY TABLE FOR **HEALTHY FEMALE PARTICIPANTS** [94 GAM Basic]

Age x

15 16

17

18

0.014	19	0.000301
0.014	20	0.000305
0.014	21	0.000303
0.013	22	0.000300
0.013		0.000311
0.014		
0.014	24	0.000313
0.015	25	0.000313
0.015	26	0.000316
0.015	27	0.000324
0.015	28	0.000338
0.015	29	0.000356
0.014	30	0.000377
0.014	31	0.000401
0.013	32	0.000427
0.012	33	0.000454
0.011	34	0.000482
0.010	35	0.000514
0.009	36	0.000550
0.008	37	0.000593
0.008	38	0.000643
0.007	39	0.000701
0.007	40	0.000763
0.007	41	0.000826
0.007	42	0.000888
0.005	43	0.000943
0.005	44	0.000992
0.003	45	0.001046
0.004	46	0.001111
0.004	47	0.001196
0.003	48	0.001297
0.003	49	0.001408
0.003	50	0.001536
0.002	51	0.001686
0.002	52	0.001864
0.002	53	0.002051
0.001	54	0.002241
0.001	55	0.002466
0.000	56	0.002755
0.000	57	0.002733
0.000	58	0.003612
0.000	59	0.003012
0.000	60	0.004773
0.000	61	0.004773
		0.005476
0.000	-	0.006271
0.000		0.007179
0.000	64	0.006194

TABLE 3.—MORTALITY TABLE FOR HEALTHY FEMALE PARTICIPANTS-Continued

[94 GAM Basic]		A a a . v	
		Age x	
Age x	q_{x}	20	
65	0.009286	21	
66	0.010423	22	
67	0.011574	23	
68	0.012648	24	
69	0.013665	25	
70	0.014763	26 27	
71	0.016079	28	
72	0.017748	29	
73	0.019724	30	
74	0.021915	31	
75	0.024393 0.027231	32	
76 77	0.027231	33	
78	0.030301	34	
79	0.038024	35	
80	0.042361	36	
81	0.047260	37	
82	0.052853	38 39	
83	0.058986	39 40	
84	0.065569	41	
85	0.072836	42	
86	0.081018	43	
87	0.090348	44	
88	0.100882	45	
89	0.112467	46	
90 91	0.125016 0.138442	47	
92	0.152660	48	
93	0.167668	49	
94	0.183524	50	
95	0.200229	51	
96	0.217783	52 53	
97	0.236188	54	
98	0.255605	55	
99	0.276035	56	
100	0.297233	57	
101	0.318956	58	
102	0.340960	59	
103	0.364586 0.389996	60	
104 105	0.369996	61	
106	0.413100	62	
107	0.456824	63	
108	0.471493	64	
109	0.483473	65	
110	0.492436	66 67	
111	0.498054	68	
112	0.500000	69	
113	0.500000	70	
114	0.500000	71	
115	0.500000	72	
116	0.500000	73	
117	0.500000	74	

TABLE 4.—PROJECTION SCALE AA FOR HEALTHY FEMALE PARTICIPANTS

118

120

0.500000

0.500000

1.000000

75

77

78

80

82

83

85 86

87

88

89

.....

.....

	Age x	AA_{X}
15		0.016
16		0.015
17		0.014
18		0.014
19		0.015

TABLE 4.—PROJECTION SCALE AA FOR HEALTHY FEMALE PARTICI-PANTS—Continued

	Age x	AA_X
20		0.016
21		0.017
22		0.017
23		0.016
24		0.015
25		0.014
26		0.012
27		0.012
28		0.012
29		0.012
30		0.012
31		0.010
32		0.008
33		0.008
34		
35		0.010 0.011
36		0.012
37		0.013
38		0.014
39		0.015
40		0.015
41		0.015
42		0.015
43		0.015
44		0.015
45		0.016
46		0.017
47		0.018
48		0.018
49		0.018
50		0.017
51		0.016
52		0.014
53		0.012

TABLE 4.—PROJECTION SCALE AA FOR HEALTHY FEMALE PARTICI-PANTS—Continued

Age x	AA_X
90	0.003
91	0.003
92	0.003
93	0.002
94	0.002
95	0.002
96	0.002
97	0.001
98	0.001
99	0.001
100	0.001
101	0.000
102	0.000
103	0.000
104	0.000
105	0.000
106	0.000
107	0.000
108	0.000
109	0.000
110	0.000
111	0.000
112	0.000
113	0.000
114	0.000
115	0.000
116	0.000
117	0.000
118	0.000
119	0.000
120	0.000

TABLE 5.—MORTALITY TABLE FOR SO-CIAL SECURITY DISABLED MALE **PARTICIPANTS**

0.010

0.008

0.006

0.005

0.005

0.005

0.005

0.005 0.005

0.005

0.005 0.005 0.005

0.005 0.005

0.005

0.005 0.006

0.006 0.007

0.007

0.008

0.008

0.007

0.007 0.007

0.007

0.007

0.007

0.007 0.007 0.006

0.005

0.004

0.004

0.003

Age x	q_{X}
15	0.022010
16	0.022502
17	0.023001
18	0.023519
19	0.024045
20	0.024583
21	0.025133
22	0.025697
23	0.026269
24	0.026857
25	0.027457
26	0.028071
27	0.028704
28	0.029345
29	0.029999
30	0.030661
31	0.031331
32	0.032006
33	0.032689
34	0.033405
35	0.034184
36	0.034981
37	0.035796
38	0.036634
39	0.037493
40	0.038373
41	0.039272
42	0.040189
43	0.041122
44	0.042071

TABLE	5.—Mortal	ITY TABLE F	or So-
CIAL	SECURITY	DISABLED	MALE
PART	ICIDANITS—C	ontinued	

TABLE 6.—MORTALITY TABLE FOR SO-CIAL SECURITY DISABLED FEMALE PARTICIPANTS

TABLE 6.—MORTALITY TABLE FOR SO-CIAL SECURITY DISABLED FEMALE PARTICIPANTS—Continued

		_	
Age x	q_{x}	Age x	qx
5	0.043033	15	0.0077
6	0.044007	16	0.00812
7	0.044993	17	0.00847
8	0.045989	18	0.0088
9	0.046993	19	0.00924
0	0.048004	20	0.0096
1	0.049021	21	0.01007
2	0.050042	22	0.01052
3	0.051067	23	0.01098
4	0.052093	24 25	0.01146
5	0.053120	25 26	0.01197
3	0.054144	27	0.0125 0.0130
7	0.055089	28	0.0136
3	0.056068	29	0.0130
9	0.057080	30	0.0142
	0.057080	31	0.0154
)		32	0.0154
l	0.059172	33	0.0166
<u> </u>	0.060232	34	0.0171
3	0.061303	35	0.0176
	0.062429	36	0.0182
§	0.063669	37	0.0187
§	0.065082	38	0.0193
······	0.066724	39	0.0199
3	0.068642	40	0.0205
)	0.070834	41	0.0212
)	0.073284	42	0.0218
	0.075979	43	0.0225
2	0.078903	44	0.0232
3	0.082070	45	0.0239
·	0.085606	46	0.0247
5	0.088918	47	0.0255
S	0.092208	48	0.0262
⁷	0.095625	49	0.0271
3	0.099216	50	0.0279
)	0.103030	51	0.0288
)	0.107113	52	0.0297
	0.111515	53	0.0306
2	0.116283	54	0.0316
3	0.121464	55	0.0325
F	0.127108	56	0.0336
5	0.133262	57	0.0346
S	0.139974	58	0.0357
⁷	0.147292	59	0.0368
3	0.155265	60	0.0379
)	0.163939	61 62	0.0391
)	0.173363	63	0.0403 0.0416
	0.183585	64	0.0410
	0.194653	65	0.0429
s	0.206615	66	0.0442
·	0.219519	67	0.0468
·	0.234086	68	0.0480
i	0.248436	69	0.0495
,	0.263954	70	0.0513
B	0.280803	71	0.0532
	0.299154	72	0.0553
0	0.319185	73	0.0575
1	0.341086	74	0.0599
)2	0.365052	75	0.0625
03	0.393102	76	0.0654
)4	0.427255	77	0.0686
05	0.469531	78	0.0722
06	0.521945	79	0.0761
07	0.586518	80	0.0804
08	0.665268	81	0.0852
09	0.760215	82	0.0904
10	1.000000	83	0.0962
. 🗸	1.000000	84	0.1025

Age x	q_{X}
85	0.109368
86	0.116837
87	0.124948
88	0.133736
89	0.143234
90	0.153477
91	0.164498
92	0.176332
93	0.189011
94	0.202571
95	0.217045
96	0.232467
97	0.248870
98	0.266289
99	0.284758
100	0.303433
101	0.327385
102	0.359020
103	0.395842
104	0.438360
105	0.487816
106	0.545886
107	0.614309
108	0.694884
109	0.789474
110	1.000000

Issued in Washington, DC, this 29 day of November, 2005.

Elaine L. Chao,

 ${\it Chairman, Board of Directors, Pension Benefit} \\ {\it Guaranty Corporation.}$

Issued on the date set forth above pursuant to a resolution of the Board of Directors authorizing its Chairman to issue this final rule.

Judith R. Starr,

Secretary, Board of Directors, Pension Benefit Guaranty Corporation.

[FR Doc. 05–23554 Filed 12–1–05; 8:45 am] BILLING CODE 7708–01–P

DEPARTMENT OF VETERANS AFFAIRS

38 CFR Parts 3 and 20

RIN 2900-AL86

Dependency and Indemnity Compensation: Surviving Spouse's Rate; Payments Based on Veteran's Entitlement to Compensation for Service-Connected Disability Rated Totally Disabling for Specified Periods Prior to Death

AGENCY: Department of Veterans Affairs. **ACTION:** Final rule.

SUMMARY: The Department of Veterans Affairs (VA) is amending its adjudication regulations concerning payment of dependency and indemnity compensation (DIC) for certain non-